Block-Wise Density Distribution of Primes Less Than A Trillion in Arithmetical Progressions $11 n+k$

Neeraj Anant Pande
Associate Professor, Department of Mathematics \& Statistics, Yeshwant Mahavidyalaya (College), Nanded, Maharashtra, INDIA

Abstract

Primes in arithmetical progressions $11 n+k$ are considered for their comparative abundance in the ten power blocks of $1-10^{\boldsymbol{n}}$ for $\mathbf{1} \leq \boldsymbol{n} \leq 12$. In each of this block, the first and the last primes of respective forms are given. For inspecting scarcity of primes, minimum number of primes of these forms in these blocks, the first and the last blocks of minimality and their frequency within the limit of one trillion are determined. This analysis is also carried out for the maximal prime container blocks.

Keywords: Arithmetical progressions, block-wise distribution, prime, prime density.
Mathematics Subject Classification 2010: 11A41, 11N05, 11 N25.

I. INTRODUCTION

In the fundamental branch number theory of mathematics, if any concept has been on the top priority for more than two millennia, it of prime numbers. Primes are known from quite long and their properties like infinitude have been explored with decent proof in the era as old as that of Euclid [1].

II. PRIMES NUMBERS AND ARITHMETICAL PROGRESSIONS

The combined study of prime numbers and arithmetical progressions is not new. On one hand, there are infinite primes and on the other, every arithmetical progression $a n+b$ contains infinite number of numbers. The natural question is does it contain infinite number of primes? The answer is not always assertive. The condition under which the assertion holds was identified and proved by Dirichlet [2]. It says that progression $a n+b$ can contain infinite number of primes if, and only if, a and b are co-primes, i.e., their greatest common factor is 1 .

In this context all prime containing arithmetical progression $a n+b$ with $a=2,3,4,5,6,7,8,9,10$ have been extensively analyzed in earlier works [3]-[14]. There in addition to usual symbol $\pi(x)$ for number of primes less than or equal to x, a new symbol $\pi_{a, b}(x)$ has been introduced to mean the number of primes less than or equal to x in arithmetical progression $a n+b$. Here we continue the use of that.

III. PRIMES DISTRIBUTIONS IN ARITHMETICAL PROGRESSIONS $11 \boldsymbol{n} \boldsymbol{+}$

In any arithmetical progression $a n+b, a$ and b are fixed integers, generally positive only. In fact, in standard arithmetical progressions, b is dependent on a, so long as its range is concerned. For any fixed a, the characteristic values of b range over $0,1, \ldots, a-1$. They together give a different arithmetical progressions which form a partition of the set of all integers I. That is these as sets of numbers in them are mutually exclusive and their union is I. Hence every integer is bound to be in one and only one of them, so is every prime. Of these, by Dirichlet's property, for those b 's which have a common divisor greater than 1 with a, the progressions $a n+b$ contain at most finite number of primes and others for which a and b have only 1 as the greatest common divisor, progression $a n+b$ contain infinite number of primes.

International Journal of Recent Research in Mathematics Computer Science and Information Technology Vol. 3, Issue 1, pp: (70-81), Month: April 2016 - September 2016, Available at: www.paperpublications.org

The case becomes special when a itself is a prime number. For now, except 0 , every b with $1 \leq b \leq a-1$ is co-prime with a and every progression $a n+b(1 \leq b \leq a-1)$ contains infinite number of primes. Some cases like these have been seen earlier [3], [4], [6], [8]. Here we analyze first such two digit case of $a=11$.

IV. PRIMES NUMBER RACE AMONGST THOSE IN PROGRESSIONS $11 \boldsymbol{n} \boldsymbol{+} \boldsymbol{k}$

Generation of prime numbers has been challenge right from the beginning due to the formula they lack. There are various algorithms for this purpose. Time and effort saving prime generating algorithm is an outcome of an exhaustive comparison of many of them [15] - [21]. Implementing that over Java programming language [22], the analysis of this work was possible for all primes till one trillion.

Whenever the term prime number race comes in context of number of primes in arithmetical progressions, we cannot prevent temptation of recalling the mathematicians who introduced this terminology, viz., Granville and Martin [23], neither can one avoid such comparison of all valid progressions for understanding dominance of abundance of primes.

Since our $a=11$ is itself prime here, there are as many as 10 progression candidates that contain infinitely many primes, viz., $11 n+k$, for $k=1,2,3, \ldots, 10$. Only one which contains finite number of primes, to be precise unique prime, is $11 n+0=11 n$.

TABLE I: NUMBER OF PRIMES OF FORM $11 n+k$ IN FIRST BLOCKS OF 10 POWERS

Sr. No	Range 1-x (1 to x)	Number of Primes of Form				
		$\begin{aligned} & 11 n+1 \\ & \left(\pi_{11,1}(x)\right) \\ & \hline \end{aligned}$	$\begin{aligned} & 11 n+2 \\ & \left(\pi_{11,2}(x)\right) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 11 n+3 \\ & \left(\pi_{11,3}(x)\right) \\ & \hline \end{aligned}$	$\begin{aligned} & 11 n+4 \\ & \left(\pi_{11,4}(x)\right) \\ & \hline \end{aligned}$	$\begin{aligned} & 11 n+5 \\ & \left(\pi_{11,5}(x)\right) \\ & \hline \end{aligned}$
1.	1-10	0	1	1	0	1
2.	1-100	3	3	2	2	2
3.	1-1,000	17	18	18	16	17
4.	1-10,000	125	120	122	118	121
5.	1-100,000	945	957	963	962	963
6.	1-1,000,000	7,858	7,843	7,814	7,839	7,853
7.	1-10,000,000	66,386	66,541	66,480	66,452	66,376
8.	1-100,000,000	576,103	576,332	575,872	575,818	576,332
9.	1-1,000,000,000	5,084,435	5,084,868	5,084,160	5,084,801	5,084,762
0.	1-10,000,000,000	45,504,543	45,506,100	45,503,956	45,505,446	45,505,736
1.	1-100,000,000,000	411,802,209	411,802,535	411,801,956	411,808,174	411,801,090
2.	1-1,000,000,000,000	3,760,794,629	3,760,792,712	3,760,791,888	3,760,781,586	3,760,794,820

Sr. No N	Range $1-x(1$ to $x)$		Number of Primes of Form $\left(\pi_{11,6}(x)\right)$	$11 n+7$ $\left(\pi_{11,7}(x)\right)$	$11 n+8$ $\left(\pi_{11,8}(x)\right)$	$11 n+9$ $\left(\pi_{11,9}(x)\right)$
		0	1	0	0	$11 n+10$ $\left(\pi_{11,10}(x)\right)$
2.	$1-100$	3	3	2	0	1
3.	$1-1,000$	18	17	15	15	16
4.	$1-10,000$	125	124	124	126	123
5.	$1-100,000$	966	955	958	953	969
6.	$1-1,000,000$	7,876	7,874	7,873	7,828	7,839
7.	$1-10,000,000$	66,448	66,490	66,507	66,425	66,473
8.	$1-100,000,000$	576,056	576,487	576,172	575,927	576,355
9.	$1-1,000,000,000$	$5,085,277$	$5,084,752$	$5,085,005$	$5,084,213$	$5,085,260$
0.	$1-10,000,000,000$	$45,504,686$	$45,505,997$	$45,506,529$	$45,503,578$	$45,505,939$
1.	$1-100,000,000,000$	$411,809,535$	$411,807,927$	$411,806,854$	$411,806,740$	$411,807,792$
2.	$1-1,000,000,000,000$	$3,760,792,969$	$3,760,792,698$	$3,760,790,587$	$3,760,781,217$	$3,760,798,911$

International Journal of Recent Research in Mathematics Computer Science and Information Technology Vol. 3, Issue 1, pp: (70-81), Month: April 2016 - September 2016, Available at: www.paperpublications.org

This has covered all primes till 1 trillion except 11 which is of form $11 n+0=11 n$. Ignoring this, some forms like $11 n+10$ are ahead of average while others like $11 n+9$ mostly lag behind it for our discrete values, as shown in the figure.

FIGURE I: DEVIATION OF $\pi_{11, k}(x)$ FROM AVERAGE.

V. BLOCK-WISE DISTRIBUTION OF PRIMES IN PROGRESSIONS $11 \boldsymbol{n}+\boldsymbol{k}$

Our analysis has started block-wise and we continue it the same way. Instead of only first blocks of 10 powers, we consider all possible blocks of all possible 10 powers till 1 trillion. The blocks of various 10 powers that we get are :

1-10, 11-20, 21-30, 31-40, \cdots
1-100, 101-200, 201-300, 301-400, \cdots
$1-1000,1001-2000,2001-3000,3001-4000, \cdots$
!
As our range is $1-10^{12}$, there come out 10^{12-n} number of blocks of 10^{n} size for each $1 \leq n \leq 12$. We refer to a block by a number one less that its starting; like for example, for 100 size, the block 0 means block of 1 - 100, block 100 means 101 - 200 etc.

5.1. The First and the Last Primes in the First Blocks of 10 Powers:

The quest of first primes in first blocks of all possible 10 powers is relatively easier as one gets them early.
TABLE II: FIRST PRIMES OF FORM $11 n+\boldsymbol{k}$ FIRST BLOCKS OF 10 POWERS

	Range$\text { 1-x }(1 \text { to } x)$	First Prime in the First Block of form									
No		$\begin{aligned} & 11 n+ \\ & 1 \end{aligned}$	$\begin{aligned} & 11 n+ \\ & 2 \end{aligned}$	$\begin{aligned} & 11 n+ \\ & 3 \end{aligned}$	$\begin{aligned} & 11 n+ \\ & 4 \end{aligned}$	$\begin{aligned} & 11 n+ \\ & 5 \end{aligned}$	$\begin{aligned} & 11 n+ \\ & 6 \end{aligned}$	$\begin{aligned} & 11 n+ \\ & 7 \end{aligned}$	$\begin{aligned} & 11 n+ \\ & 8 \end{aligned}$	$\begin{aligned} & 11 n+ \\ & 9 \end{aligned}$	$\begin{aligned} & 11 n+ \\ & 10 \end{aligned}$
1.	1-10	-	2	3	-	5	-	7	-	-	-
2.	1-100 till 1-10 ${ }^{12}$	23	2	3	37	5	17	7	19	31	43

Cumbersome exercise of determination of last such primes of specific forms in first blocks has given the following.

International Journal of Recent Research in Mathematics Computer Science and Information Technology Vol. 3, Issue 1, pp: (70-81), Month: April 2016 - September 2016, Available at: www.paperpublications.org

TABLE III: LAST PRIMES OF FORM $11 n+\boldsymbol{k}$ FIRST BLOCKS OF 10 POWERS

| $\begin{array}{l}\text { Sr. } \\ \text { No }\end{array}$ | $\begin{array}{l}\text { Range } \\ \end{array}$ | $1-x(1$ to $x)$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |$)$

Sr. No	Range	$1-x(1$ to $x)$	Last Prime in the First Block of form					$11 n+10$
	$11 n+6$	$11 n+7$	$11 n+8$	-	-			
1.	$1-10$	-	7	-	97	43		
2.	$1-100$	83	73	877	977	967		
3.	$1-1,000$	941	997	9,941	9,931	9,833		
4.	$1-10,000$	9,851	9,973	99,877	99,823	99,989		
5.	$1-100,000$	99,809	99,733	999,853	999,953	999,613		
6.	$1-1,000,000$	999,983	999,907	$9,999,943$	$9,999,889$	$9,999,901$		
7.	$1-10,000,000$	$9,999,677$	$9,999,931$	$99,999,941$	$99,999,931$	$999,999,547$		
8.	$1-100,000,000$	$99,999,587$	$99,999,643$	$999,999,613$	$999,999,757$	$999,999,527$		
9.	$1-1,000,000,000$	$999,999,677$	$999,999,733$	9,999				
10.	$1-10,000,000,000$	$9,999,999,851$	$9,999,999,929$	$9,999,999,787$	$9,999,999,557$	$9,999,999,943$		
11.	$1-100,000,000,000$	$99,999,999,391$	$99,999,999,821$	$99,999,999,943$	$99,999,999,977$	$99,999,999,769$		
12.	$1-1,000,000,000,000$	$999,999,999,961$	$999,999,999,863$	$999,999,999,611$	$999,999,999,359$	$999,999,999,899$		

It's time to compare both these parameters graphically to have a quick glimpse at trends.

FIGURE II: FIRST $\&$ LAST PRIMES OF FORM $11 n+k$ IN FIRST BLOCKS OF 10 POWERS.
And as mentioned earlier, the form $11 n+0=11 n$ is kept aside in these; its first and last prime in all blocks of size 100 and higher are 11.

International Journal of Recent Research in Mathematics Computer Science and Information Technology Vol. 3, Issue 1, pp: (70-81), Month: April 2016 - September 2016, Available at: www.paperpublications.org

5.2. Minimum Number of Primes in Blocks of 10 Powers:

The analysis of block-wise prime density demands the knowledge of minimum number of prime numbers within them for determining prime scarcity.

TABLE IV: MINIMUM NUMBER OF PRIMES OF FORM $11 \boldsymbol{n} \boldsymbol{+} \boldsymbol{k}$ IN BLOCKS OF 10 POWERS

Sr. No	Range	$1-x(1$ to $x)$	Minimum Number of Primes in Blocks for form				
	$11 n+1$	$11 n+2$	$11 n+3$	$11 n+4$	$11 n+5$		
1.	$1-10$	0	0	0	0	0	
2.	$1-100$	0	0	0	0	0	
3.	$1-1,000$	0	0	11	12	0	
4.	$1-10,000$	11	294	289	288	11	
5.	$1-100,000$	292	3,429	35,707	361,186	361,042	

Sr. No.	$\begin{aligned} & \text { Range } \\ & 1-x(1 \text { to } x) \end{aligned}$	Minimum Number of Primes in Blocks for form				
		$11 n+6$	$11 n+7$	$11 n+8$	$11 n+9$	$11 n+10$
1.	1-10	0	0	0	0	0
2.	1-100	0	0	0	0	0
3.	1-1,000	0	0	0	0	0
4.	1-10,000	12	12	12	10	12
5.	1-100,000	289	296	285	291	291
6.	1-1,000,000	3,434	3,427	3,441	3,420	3,422
7.	1-10,000,000	35,727	35,683	35,761	35,708	35,745
8.	1-100,000,000	361,052	361,071	361,190	361,126	361,117
9.	1-1,000,000,000	3,618,311	3,616,888	3,618,640	3,618,423	3,616,959
0.	1-10,000,000,000	36,194,731	36,193,977	36,201,252	36,198,536	36,194,872
1.	1-100,000,000,000	362,588,651	362,587,620	362,600,376	362,586,360	362,589,385
2.	1-1,000,000,000,000	3,760,792,969	3,760,792,698	3,760,790,587	3,760,781,217	3,760,798,911

The block-wise deviation of minimum number of primes from respective averages, except $11 n+0$, comes ahead.

FIGURE III: \% DEVIATION IN MINIMUM NUMBER OF PRIMES OF FORM $11 n+k$ IN BLOCKS OF 10 POWERS FROM AVERAGE

International Journal of Recent Research in Mathematics Computer Science and Information Technology Vol. 3, Issue 1, pp: (70-81), Month: April 2016 - September 2016, Available at: www.paperpublications.org

With the convention adopted, now follow the first blocks with those many minimum number of primes in them.
TABLE V: FIRST BLOCKS OF 10 POWERS WITH MINIMUM NUMBER OF PRIMES OF FORM $11 n+\boldsymbol{k}$ IN THEM

Sr.	Range	First Block with Minimum Number of Primes of form				
No	1-x (1 to x)	$11 n+1$	$11 n+2$	$11 n+3$	$11 n+4$	$11 n+5$
1.	1-10	0	20	10	0	10
2.	1-100	200	300	1,000	1,300	1,400
3.	1-1,000	3,044,000	4,161,000	3,226,000	7,230,000	5,681,000
4.	1-10,000	867,275,260,000	434,307,190,000	711,562,010,000	427,226,920,000	567,923,030,000
5.	1-100,000	805,192,000,000	833,286,300,000	985,032,100,000	895,109,000,000	709,444,200,000
6.	1-1,000,000	945,771,000,000	941,148,000,000	875,402,000,000	956,827,000,000	790,270,000,000
7.	1-10,000,000	955,940,000,000	962,330,000,000	989,030,000,000	983,690,000,000	941,930,000,000
8.	1-100,000,000	992,200,000,000	997,000,000,000	995,200,000,000	989,700,000,000	972,200,000,000
9.	1-1,000,000,000	997,000,000,000	997,000,000,000	995,000,000,000	996,000,000,000	998,000,000,000
0.	1-10,000,000,000	990,000,000,000	990,000,000,000	990,000,000,000	990,000,000,000	990,000,000,000
1.	1-100,000,000,000	900,000,000,000	900,000,000,000	900,000,000,000	900,000,000,000	900,000,000,000

Sr. No	Range$\text { 1-x }(1 \text { to } x)$	First Block with Minimum Number of Primes of form				
		$11 n+6$	$11 n+7$	$11 n+8$	$11 n+9$	$11 n+10$
1.	1-10	0	10	0	0	0
2.	1-100	1,800	1,500	400	500	3,400
3.	1-1,000	5,787,000	8,631,000	3,128,000	4,108,000	7,591,000
4.	1-10,000	631,546,300,000	412,284,570,000	547,550,600,000	865,552,140,000	533,845,650,000
5.	1-100,000	541,152,800,000	721,827,400,000	851,279,600,000	961,454,400,000	830,087,200,000
6.	1-1,000,000	987,380,000,000	908,327,000,000	991,702,000,000	779,726,000,000	928,439,000,000
7.	1-10,000,000	995,370,000,000	983,640,000,000	995,240,000,000	981,030,000,000	984,840,000,000
8.	1-100,000,000	997,000,000,000	994,300,000,000	996,500,000,000	999,500,000,000	980,200,000,000
9.	1-1,000,000,000	998,000,000,000	993,000,000,000	996,000,000,000	996,000,000,000	999,000,000,000
0.	1-10,000,000,000	990,000,000,000	990,000,000,000	990,000,000,000	990,000,000,000	990,000,000,000
1.	1-100,000,000,000	900,000,000,000	900,000,000,000	900,000,000,000	900,000,000,000	900,000,000,000

Similarly, the last blocks with those many minimum number of primes in them are also determined.
TABLE VI: LAST BLOCKS OF 10 POWERS WITH MINIMUM NUMBER OF PRIMES OF FORM $11 n+k$ IN THEM

Sr No	Range	$1-x(1$ to $x)$	Last Block with Minimum Number of Primes of form				
	$11 n+1$	$11 n+2$	$11 n+3$	$11 n+4$	$11 n+5$		
1.	$1-10$	$999,999,999,990$	$999,999,999,990$	$999,999,999,990$	$999,999,999,990$	$999,999,999,990$	
2.	$1-100$	$999,999,999,700$	$999,999,999,900$	$999,999,999,900$	$999,999,999,800$	$999,999,999,900$	
3.	$1-1,000$	$999,999,939,000$	$999,999,906,000$	$999,999,997,000$	$999,999,932,000$	$999,999,966,000$	
4.	$1-10,000$	$984,749,900,000$	$933,769,560,000$	$711,562,010,000$	$795,643,980,000$	$963,976,010,000$	
5.	$1-100,000$	$805,192,000,000$	$986,615,800,000$	$985,032,100,000$	$973,060,600,000$	$709,444,200,000$	
6.	$1-1,000,000$	$945,771,000,000$	$941,148,000,000$	$875,402,000,000$	$956,827,000,000$	$790,270,000,000$	
7.	$1-10,000,000$	$955,940,000,000$	$962,330,000,000$	$989,030,000,000$	$983,690,000,000$	$941,930,000,000$	
8.	$1-100,000,000$	$992,200,000,000$	$997,000,000,000$	$995,200,000,000$	$989,700,000,000$	$972,200,000,000$	
9.	$1-1,000,000,000$	$997,000,000,000$	$997,000,000,000$	$995,000,000,000$	$996,000,000,000$	$998,000,000,000$	
0.	$1-10,000,000,000$	$990,000,000,000$	$990,000,000,000$	$990,000,000,000$	$990,000,000,000$	$990,000,000,000$	
1.	$1-100,000,000,000$	$900,000,000,000$	$900,000,000,000$	$900,000,000,000$	$900,000,000,000$	$900,000,000,000$	

International Journal of Recent Research in Mathematics Computer Science and Information Technology Vol. 3, Issue 1, pp: (70-81), Month: April 2016 - September 2016, Available at: www.paperpublications.org

Sr. No	Range	$1-x(1$ to $x)$	Last Block with Minimum Number of Primes of form				
		$11 n+7$	$11 n+8$	$11 n+9$	$11 n+10$		
1.	$1-10$	$999,999,999,990$	$999,999,999,990$	$999,999,999,990$	$999,999,999,990$	$999,999,999,990$	
2.	$1-100$	$999,999,999,800$	$999,999,999,900$	$999,999,999,900$	$999,999,999,900$	$999,999,999,900$	
3.	$1-1,000$	$999,999,896,000$	$999,999,993,000$	$999,999,992,000$	$999,999,942,000$	$999,999,984,000$	
4.	$1-10,000$	$765,033,460,000$	$870,788,820,000$	$688,140,350,000$	$865,552,140,000$	$875,889,070,000$	
5.	$1-100,000$	$541,152,800,000$	$989,254,500,000$	$851,279,600,000$	$961,454,400,000$	$830,087,200,000$	
6.	$1-1,000,000$	$987,380,000,000$	$908,327,000,000$	$991,702,000,000$	$779,726,000,000$	$928,439,000,000$	
7.	$1-10,000,000$	$995,370,000,000$	$983,640,000,000$	$995,240,000,000$	$981,030,000,000$	$984,840,000,000$	
8.	$1-100,000,000$	$997,000,000,000$	$994,300,000,000$	$996,500,000,000$	$999,500,000,000$	$980,200,000,000$	
9.	$1-1,000,000,000$	$998,000,000,000$	$993,000,000,000$	$996,000,000,000$	$996,000,000,000$	$999,000,000,000$	
0.	$1-10,000,000,000$	$990,000,000,000$	$990,000,000,000$	$990,000,000,000$	$990,000,000,000$	$990,000,000,000$	
1.	$1-100,000,000,000$	$900,000,000,000$	$900,000,000,000$	$900,000,000,000$	$900,000,000,000$	$900,000,000,000$	

We compare both types graphically.

FIGURE IV: FIRST \& LAST BLOCKS OF 10 POWERS WITH MINIMUM NUMBER OF PRIMES OF FORM $11 n+k$.
The unmentioned values for forms $11 n+0$ are parallel to corresponding values for arithmetical progression $8 n+2$ given in [9]. Next search was of the number of times such blocks with minimum number of primes of all these forms occur.

TABLE VII: FREQUENCY OF 10 POWER BLOCKS WITH MINIMUM NUMBER OF PRIMES OF FORM $11 n+k$ IN THEM

Sr. No	Range $1-x(1$ to $x)$	No. of Blocks with Minimum No. of Primes of form					
		$11 n+2$	$11 n+3$	$11 n+4$	$11 n+5$		
1.	$1-10$	$96,239,205,371$	$96,239,207,288$	$96,239,208,112$	$96,239,218,414$	$96,239,205,180$	
2.	$1-100$	$6,670,644,133$	$6,670,670,372$	$6,670,672,363$	$6,670,677,164$	$6,670,645,505$	
3.	$1-1,000$	$13,898,378$	$13,905,293$	$13,900,677$	$13,900,419$	$13,899,232$	
4.	$1-10,000$	4	3	1	5	2	
5.	$1-100,000$	1	4	1	2	1	
6.	$1-1,000,000$ till 10^{11}	1	1	1	1	1	

International Journal of Recent Research in Mathematics Computer Science and Information Technology Vol. 3, Issue 1, pp: (70-81), Month: April 2016 - September 2016, Available at: www.paperpublications.org

Sr. No	Range		$1-x(1$ to $x)$	No. of Blocks with Minimum No. of Primes of form		
	$11 n+6$	$11 n+7$	$11 n+8$	$11 n+9$	$11 n+10$	
1.	$1-10$	$96,239,207,031$	$96,239,207,302$	$96,239,209,413$	$96,239,218,783$	$96,239,201,089$
2.	$1-100$	$6,670,672,703$	$6,670,645,889$	$6,670,675,043$	$6,670,667,440$	$6,670,676,692$
3.	$1-1,000$	$13,899,087$	$13,899,259$	$13,900,091$	$13,891,822$	$13,898,180$
4.	$1-10,000$	2	5	3	1	2
5.	$1-100,000$	1	5	1	1	1
6.	$1-1,000,000$ till 10^{11}	1	1	1	1	1

FIGURE V: \% DECREASE IN OCCURENCES OF MINIMUM NUMBER OF PRIMES OF FORM $11 n+\boldsymbol{k}$ IN BLOCKS OF 10 POWERS.

5.3. Maximum Number of Primes in Blocks of 10 Powers:

The analysis of block-wise prime density also demands the knowledge of maximum number of prime numbers within them for determining prime abundance.

TABLE VIII: MAXIMUM NUMBER OF PRIMES OF FORM $11 \boldsymbol{n} \boldsymbol{+} \boldsymbol{k}$ IN BLOCKS OF 10 POWERS

Sr No	Range $1-x(1$ to $x)$	Maximum Number of Primes in Blocks for form				
		$11 n+2$	$11 n+3$	$11 n+4$	$11 n+5$	
1.		1	1	1	1	1
2.		4	4	4	4	4
3.		17	18	18	17	17
4.		125	120	122	118	121
5.	$1-100,000$	945	957	963	962	963
6.	$1-1,000,000$	7,858	7,843	7,814	7,839	7,853
7.	$1-10,000,000$	66,386	66,541	66,480	66,452	66,376
8.	$1-100,000,000$	576,103	576,332	575,872	575,818	576,332
9.	$1-1,000,000,000$	$5,084,435$	$5,084,868$	$5,084,160$	$5,084,801$	$5,084,762$
10.	$1-10,000,000,000$	$45,504,543$	$45,506,100$	$45,503,956$	$45,505,446$	$45,505,736$
11.	$1-100,000,000,000$	$411,802,209$	$411,802,535$	$411,801,956$	$411,808,174$	$411,801,090$
12.	$1-1,000,000,000,000$	$3,760,794,629$	$3,760,792,712$	$3,760,791,888$	$3,760,781,586$	$3,760,794,820$

International Journal of Recent Research in Mathematics Computer Science and Information Technology Vol. 3, Issue 1, pp: (70-81), Month: April 2016 - September 2016, Available at: www.paperpublications.org

Sr No.	Range 1-x $(1$ to $x)$	Maximum Number of Primes in Blocks for form				
		$11 n+7$	$11 n+8$	$11 n+9$	$11 n+10$	
1.		1	1	1	1	1
2.	$1-100$	4	4	4	4	4
3.	$1-1,000$	18	17	17	16	16
4.	$1-10,000$	125	124	124	126	123
5.	$1-100,000$	966	955	958	953	969
6.	$1-1,000,000$	7,876	7,874	7,873	7,828	7,839
7.	$1-10,000,000$	66,448	66,490	66,507	66,425	66,473
8.	$1-100,000,000$	576,056	576,487	576,172	575,927	576,355
9.	$1-1,000,000,000$	$5,085,277$	$5,084,752$	$5,085,005$	$5,084,213$	$5,085,260$
10.	$1-10,000,000,000$	$45,504,686$	$45,505,997$	$45,506,529$	$45,503,578$	$45,505,939$
11.	$1-100,000,000,000$	$411,809,535$	$411,807,927$	$411,806,854$	$411,806,740$	$411,807,792$
12.	$1-1,000,000,000,000$	$3,760,792,969$	$3,760,792,698$	$3,760,790,587$	$3,760,781,217$	$3,760,798,911$

FIGURE VI: \% DEVIATION IN MAXIMUM NUMBER OF PRIMES OF FORM $11 n+\boldsymbol{k}$ IN BLOCKS OF 10 POWERS FROM AVERAGE.

Like minimum analysis, now the first blocks containing maximum number of such primes are determined.
TABLE IX: FIRST BLOCKS OF 10 POWERS WITH MAXIMUM NUMBER OF PRIMES OF FORM $11 \boldsymbol{n} \boldsymbol{+} \boldsymbol{k}$ IN THEM

Sr.	Range$1-x(1 \text { to } x)$	First Block with Maximum Number of Primes of form									
N o.		$\begin{aligned} & 11 n+ \\ & 1 \end{aligned}$	$\begin{gathered} 11 n+ \\ 2 \end{gathered}$	$\begin{aligned} & 11 n+ \\ & 3 \end{aligned}$	$11 n+4$	$\begin{aligned} & 11 n+ \\ & 5 \end{aligned}$	$\begin{aligned} & 11 n+ \\ & 6 \end{aligned}$	$11 n+7$	$\begin{aligned} & 11 n+ \\ & 8 \end{aligned}$	$11 n+9$	$\begin{aligned} & 11 n+ \\ & 10 \end{aligned}$
1.	1-10	20	0	0	30	0	10	0	10	30	40
2.	1-100	2,300	21,000	67,400	319,400	17,000	52,200	35,900	1,800	3,000	49,400
3.	1-1,000	0	0	0	4,000	0	0	0	1,000	1,336,000	0
4.	$\begin{aligned} & 1-10,000 \text { till } \\ & 1-10^{12} \end{aligned}$	0	0	0	0	0	0	0	0	0	0

Likewise, the last blocks with maximum number of primes in them are found to be as follows.

International Journal of Recent Research in Mathematics Computer Science and Information Technology Vol. 3, Issue 1, pp: (70-81), Month: April 2016 - September 2016, Available at: www.paperpublications.org

TABLE X: LAST BLOCKS OF 10 POWERS WITH MAXIMUM NUMBER OF PRIMES OF FORM $11 n+k$ IN THEM

Sr.	Range	Last Block with Maximum Number of Primes of form				
No	$1-x(1$ to $x)$	$11 n+1$	$11 n+2$	$11 n+3$	$11 n+4$	$11 n+5$
1.	$1-10$	$999,999,999,980$	$999,999,999,840$	$999,999,999,610$	$999,999,999,950$	$999,999,999,700$
2.	$1-100$	$999,998,511,600$	$999,997,928,700$	$999,999,220,200$	$999,999,617,400$	$999,995,594,900$
3.	$1-1,000$	0	0	0	4,000	0
4.	$1-10,000$ till 10^{12}	0	0	0	0	0

Sr.	Range					
No	$1-x(1$ to $x)$	Last Block with Maximum Number of Primes of form				
	$11 n+6$	$11 n+7$	$11 n+8$	$11 n+9$	$11 n+10$	
1.	$1-10$	$999,999,999,960$	$999,999,999,860$	$999,999,999,610$	$999,999,999,350$	$999,999,999,890$
2.	$1-100$	$999,996,081,200$	$999,991,730,700$	$999,998,312,100$	$999,991,431,800$	$999,993,021,300$
3.	$1-1,000$	0	0	1,000	$1,336,000$	$642,324,005,000$
4.	$1-10,000$ till 10^{12}	0	0	0	0	0

Due to decreasing density of primes, it is no surprise that soon the block 0 , corresponding to the starting block is the only block containing maximum primes. So we restrict our graph limits of blocks to only first few to focus on initial comparisons.

FIGURE VII: FIRST \& LAST BLOCKS OF 10 POWERS WITH MAXIMUM NUMBER OF PRIMES OF FORM $11 n+k$
The same decreasing frequency of primes forces frequency of maximum prime containing blocks to be 1 soon.

TABLE XI: FREQUENCY OF 10 POWER BLOCKS WITH MAXIMUM NUMBER OF PRIMES OF FORM $11 n+\boldsymbol{k}$ IN THEM

Sr.	Range					
No	$1-x(1$ to $x)$	No. of Blocks with Maximum No. of Primes of form				
	$11 n+1$	$11 n+2$	$11 n+3$	$11 n+4$	$11 n+5$	
1.	$1-10$	$3,760,794,629$	$3,760,792,712$	$3,760,791,888$	$3,760,781,586$	$3,760,794,820$
2.	$1-100$	239,253	240,009	239,405	239,571	239,900
3.	$1-1,000$ till 10^{12}	1	1	1	1	1

Sr. No.	Range					
	$1-x(1$ to $x)$	No. of Blocks with Maximum No. of Primes of form				
	$11 n+6$	$11 n+7$	$11 n+8$	$11 n+9$	$11 n+10$	
1.	$1-10$	$3,760,792,969$	$3,760,792,698$	$3,760,790,587$	$3,760,781,217$	$3,760,798,911$
2.	$1-100$	240,477	239,772	239,424	239,907	240,610

International Journal of Recent Research in Mathematics Computer Science and Information Technology Vol. 3, Issue 1, pp: (70-81), Month: April 2016 - September 2016, Available at: www.paperpublications.org

Sr. No.	Range						
	$1-x(1$ to $x)$	No. of Blocks with Maximum No. of Primes of form					
	$11 n+6$	$11 n+7$	$11 n+8$	$11 n+9$	$11 n+10$		
3.	$1-1,000$	1	1	1	1	3	
4.	$1-10,000$ till 10^{12}	1	1	1	1	1	

The unconsidered arithmetical progression $11 n+0$ contains maximum 1 prime only once for which the first and the last block of occurrence is the very first block 0 starting with block size 100 onwards, the frequency of which is 1 .

FIGURE VIII: DEVIATION IN FREQUENCY OF MAXIMUM NUMBER OF PRIMES IN BLOCKS FROM AVERAGE

ACKNOWLEDGEMENTS

The author extends his thanks to the Java Programming Language Development Team, the NetBeans IDE Development Team and Microsoft Excel Development Team, whose software were immensely useful in implementing the heavy and demanding algorithms developed by him.

The Computer Laboratory of Department of Mathematics \& Statistics and UPS facility of Department of Electronics of author's institution were instrumental in running long process for months together and are duly acknowledged.

The author thanks the University Grants Commission (U.G.C.), New Delhi of the Government of India for funding this research work under a Research Project (F.No. 47-748/13(WRO)).

The anonymous referees of the journal have taken efforts in finalizing the manuscript and the author is thankful to them also.

REFERENCES

[1] Euclid (of Alexandria), "Elements, Book IX" (300 BC).
[2] P.G.L. Dirichlet, "Beweis des Satzes, dass jede unbegrenzte arithmetische Progression, deren erstes Glied und Differenz ganze Zahlen ohne gemeinschaftlichen Factor sind, unendlich viele Primzahlen enthält", Abhand. Ak. Wiss. Berlin, 1837.
[3] Neeraj Anant Pande, "Analysis of Primes Less Than a Trillion", International Journal of Computer Science \& Engineering Technology, Vol. 6, No. 06, 332-341, 2015.
[4] Neeraj Anant Pande, "Analysis of Primes in Arithmetical Progressions $3 n+k$ up to a Trillion, IOSR Journal of Mathematics", Volume 11, Issue 3 Ver. IV, 72-85, 2015.

International Journal of Recent Research in Mathematics Computer Science and Information Technology Vol. 3, Issue 1, pp: (70-81), Month: April 2016 - September 2016, Available at: www.paperpublications.org
[5] Neeraj Anant Pande, "Analysis of Primes in Arithmetical Progressions $4 n+k$ up to a Trillion", International Journal of Mathematics and Computer Applications Research, Vol. 5, Issue 4, 1-18, 2015.
[6] Neeraj Anant Pande, "Analysis of Primes in Arithmetical Progressions 5n+k up to a Trillion", Journal of Research in Applied Mathematics, Volume 2, Issue 5, 14-29, 2015.
[7] Neeraj Anant Pande, "Analysis of Primes in Arithmetical Progressions $6 n+k$ up to a Trillion", International Journal of Mathematics and Computer Research, Volume 3, Issue 6, 1037-1053, 2015.
[8] Neeraj Anant Pande, "Analysis of Primes in Arithmetical Progressions $7 n+k$ up to a Trillion", International Journal of Mathematics and Its Applications, Accepted, 2016.
[9] Neeraj Anant Pande, "Block-wise Distribution of Primes less than a Trillion in Arithmetical Progressions $8 n+k$ ", IOSR Journal of Mathematics, Accepted, 2016.
[10] Neeraj Anant Pande, "Spacings Between and Units \& Tens Place Digits in Primes till One Trillion in Arithmetical Progressions $8 n+k "$, American International Journal of Research in Science, Technology, Engineering and Mathematics, Communicated, 2016.
[11] Neeraj Anant Pande, "Block-wise Density Distribution of Primes less than a Trillion in Arithmetical Progressions $9 n$ $+k$ ", International Journal of Advances in Mathematics and Statistics, Communicated, 2016.
[12] Neeraj Anant Pande, "Spacings Between and Units \& Tens Place Digits in Primes till One Trillion in Arithmetical Progressions $9 n+k$ ", International Journal of Mathematics and Statistics Invention, Communicated, 2016.
[13] Neeraj Anant Pande, "Block-wise Density Distribution of Primes less than a Trillion in Arithmetical Progressions $10 n+k "$, Journal of Research in Applied Mathematics, Communicated, 2016.
[14] Neeraj Anant Pande, "Spacings Between and Units \& Tens Place Digits in Primes till One Trillion in Arithmetical Progressions $10 n+k "$, International Journal of Computer Science \& Engineering Technology, 2016.
[15] Neeraj Anant Pande, "Evolution of Algorithms: A Case Study of Three Prime Generating Sieves", Journal of Science and Arts, Year 13, No.3(24), 267-276, 2013.
[16] Neeraj Anant Pande, "Algorithms of Three Prime Generating Sieves Improvised Through Nonprimality of Even Numbers (Except 2)", International Journal of Emerging Technologies in Computational and Applied Sciences, Issue 6, Volume 4, 274-279, 2013.
[17] Neeraj Anant Pande, "Algorithms of Three Prime Generating Sieves Improvised by Skipping Even Divisors (Except 2)", American International Journal of Research in Formal, Applied \& Natural Sciences, Issue 4, Volume 1, 22-27, 2013.
[18] Neeraj Anant Pande, "Prime Generating Algorithms through Nonprimality of Even Numbers (Except 2) and by Skipping Even Divisors (Except 2)", Journal of Natural Sciences, Vol. 2, No.1, 107-116, 2014.
[19] Neeraj Anant Pande, "Prime Generating Algorithms by Skipping Composite Divisors", International Journal of Computer Science \& Engineering Technology, Vol. 5, No. 09, 935-940, 2014.
[20] Neeraj Anant Pande, "Improved Prime Generating Algorithms by Skipping Composite Divisors and Even Numbers (Other Than 2)", Journal of Science and Arts, Year 15, No.2(31), 135-142, 2015.
[21] Neeraj Anant Pande, "Refinement of Prime Generating Algorithms", International Journal of Innovative Science, Engineering \& Technology, Vol. 2 Issue 6, 21-24, 2015.
[22] Herbert Schildt, "Java: The Complete Reference", $7^{\text {th }}$ Edition, (Tata McGraw Hill, 2006).
[23] Andrew Granville, Greg Martin, "Prime Number Races", American Mathematical Monthly, 113 (1), 1-33, 2006.

